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Abstract The variation of arrangement of micro-struc-

tural entities (i.e. inclusions) influences local properties of

composites. Thus, there is a need to classify and quantify

different micro-structural arrangements. In other words, it

is necessary to identify descriptors that characterize the

spatial dispersion of inclusions in random composites. On

the other hand, Delaunay triangulation associated with an

arbitrary set of points in a plane is unique which makes it a

good candidate for generating such descriptors. This paper

presents a framework for establishing a methodology for

characterizing microstructure morphology in random

composites and correlating that to local stress field. More

specifically, in this paper we address three main issues:

correlating microstructure morphology to local stress

fields, effect of clustering of inclusions on statistical de-

scriptors identified in the paper, and effect of number of

realizations of statistical volume elements (SVEs) on sta-

tistical descriptors.

Introduction

There are many factors which influence stress fields in

composite Materials: the mismatch in material constants,

the shape and geometric arrangement of inclusions, the

boundary conditions at inclusion–matrix interfaces, and

proximity to the surface.

A fundamental problem in the evaluation of local stress

fields is a single inclusion solution [1], which is applicable

for dilute distribution of inclusions (i.e. composites with

inclusions placed far apart from each other). When inclu-

sions are closely spaced stress fields interact and solutions

become very complex. In order to simplify this problem

effective medium approaches, such as the Mori–Tanaka

method, for example, based on a single inclusion solution,

have been used in the analytical predictions of average

stress fields [2–4]. Estimation of those averages presents a

fundamental issue for different effective medium theories

[5–7].

Numerical approaches usually involve assumptions that

the arrangement of inclusions is periodic: square or hex-

agonal. However, the distribution of inclusions in com-

posite materials is in general disordered. The periodic

arrangement assumption may give good predictions for

effective elastic and thermal constants, and average stresses

and strains in composite materials, but they cannot capture

local fields in composites with randomly arranged and

interacting inclusions. The influence of random arrange-

ment of inclusions on local fields and/or effective proper-

ties was studied by many researchers numerically [8–26],

analytically [27] and experimentally [8, 28, 29].

The dispersion of inclusions and cracks in the transverse

direction of composite materials has a very strong influence

on the local stress fields and therefore, it affects the dura-

bility and fracture characteristics of the material. Therefore
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it is necessary to re-define the unit cell concept so that it

contains enough inclusions and cracks to be representative

for the non-regular microstructure. Pijaudier-Cabot and

Bazant [30] presented a method to calculate the stress field

in a solid containing multiple inclusions and determined

the stress intensity factors for a single crack situated among

the inclusions. Another method for stress analysis in elastic

solids with randomly distributed cracks was presented by

Kachanov [31]. Both methods are based upon a superpo-

sition scheme and take into account the interaction between

inclusions and cracks.

In this paper, we correlate random microstructure mor-

phology of inclusion–matrix composites to local stress

fields. Randomness in morphology is modeled using

Voronoi tessellations and associated Delaunay triangula-

tion networks. Effect of number of statistical volume ele-

ments (SVE) and effect of inclusions clustering on

statistical descriptors of random composite is also pre-

sented.

Random composite

In order to study the random behavior of composite’s

microstructure; the randomness phenomenon has to be

properly defined. Models of random media may be useful

at two different levels: to provide a description of the

heterogeneous structure, and to predict some macroscopic

properties of materials. Randomness can be introduced into

periodic networks in various ways. There are two basic

probabilities; substitutional disorder and topological dis-

order. Substitutional disorder refers to variability in prop-

erties per vertex (or node) and topological disorder refers to

a departure from the periodic topology. There is, also, a

third case called the geometric disorder which refers to the

variability in the geometry of a network’s structure. Geo-

metric disorder is the focus of this study.

By a random composite we refer to a set

B ¼ fBðxÞ; x 2 Xg of deterministic media B(x), where x
indicates one specimen (realization), and W is an under-

lying sample (probability) space [32]. All specimens B(x)

occupy the same domain in x1x2-plane, whereby a two-

dimensional setting is employed for the clarity of presen-

tation. Formally speaking W is equipped with a r-algebra F

and a probability distribution P.

For statically homogeneous media, it is reasonable and

helpful to make the ergodic assumption which asserts that

the volume average of stress of one specific r (x) over a

given volume V equals the ensemble average of the random

function rðx;xÞ at any location x [32]. Mathematically, the

ergodicity condition is stated as

�r � 1

V

Z
V

rðx;xÞdx ¼ hri �
Z

x
rðx;xÞpðxÞdx ð1Þ

where �r is the volume average stress over a fixed x, while

hri is the ensemble average over all specimens at fixed x.

By making such assumption, the statistics of the effective

average stress r can be determined from a single realiza-

tion r (x).

In random matrix inclusion composites there are two

aspects immediately noted:

• Spatial disorder: Formulation of random medium

theory need to be adopted

• Periodicity on the scale of window L

Thus, these two aspects need to be considered whenever

a simulation of random composite of an infinite medium is

desired. Thus, in order to investigate a non-regular distri-

bution of inclusions, the unit cell concept has to be defined

in such a way so that it contains enough inclusions and

cracks to be representative of the non-regular microstruc-

ture [33]. For the purpose of characterizing microstructure

morphology of random composites, it is necessary to

identify unique descriptors that in a best way characterize

the spatial dispersion of inclusions. On the other hand,

Delaunay triangulation associated with an arbitrary set of

points in a given plane is unique which makes this method

a good candidate for generating such descriptors. Related

work was reported by [16, 18–25, 33–38].

Theory of Delaunay triangulation and voronoi cells

The theory of Delaunay triangulation is described in detail

by Green and Sibson [39]. Generally, the Delaunay trian-

gulation associated with an arbitrary set of points in the

plane is unique. Thus this method represents a meaningful

way of describing the local morphology of composite

materials where the vertices of the Delaunay triangles

represent the centers of the inclusions.

In order to generate Voronoi mosaic, first we generate

random points M1;M2 . . . in plane according to a selected

random process of density q points per unit area. Then, we

subdivide the area into cells C1;C2; . . . by the rule: Ci cell

contains all points in plane closer to Mi than to any other

Mjðj 6¼ iÞ. Mi point is the center of Ci cell. In practice Mi

represents the location of the original seed cell from which

Ci grew. In this process, one assumes that:

• seeds of all cells start growing at the same instant,

• seeds grow at the same rate in all directions,

• seeds stop growing as they contact the neighboring

ones.

Thus, a Voronoi tessellation of polygons is constructed

by drawing the perpendicular bisectors of the line segments

that connects a center with neighboring centers. This pro-

cedure assigns a unique area to each center and covers the

plane of observation without overlapping. All points
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enclosed in a polygon of the planar area are closer to its

center than to any other polygon’s center. It is then possible

to identify all neighbors of a given center, and if necessary,

to calculate statistics of neighbors distances and orienta-

tions. The dual Delaunay triangulation to the Voronoi

tessellation is constructed by connecting all random points

that share a polygon boundary. Typical Delaunay triangu-

lation and Voronoi cells are shown in Fig. 1.

In general, the vertices of the Voronoi tessellation occur

where three adjacent polygons meet. The three random

points associated with each of these polygons form a

Delaunay triangle. By definition, each vertex of a Voronoi

tessellation is equidistant from each of the three data points

forming the Delaunay triangle. Thus, each vertex of the

Voronoi tessellation is uniquely associated with a Dela-

unay triangle and is located at its circumcenter. When the

Delaunay triangulation is complete, this means that no data

point may lie inside the circumcircle of any triangle.

In this paper four statistical descriptors are used: nearest

neighbor distance; nearest neighbor angle with respect to

horizontal axis X; cell size (Area of cell); and number of

nearest neighbors (number of polygon sides). Figure 2

shows the schematic of the statistical descriptors used in

this paper. Centers of inclusions are represented by vertices

of triangles. In the figure, d represents the nearest neighbor

distance for one pair of inclusions, a represents the angle to

nearest neighbor for one pair of inclusions, Ap represents

Fig. 1 (i) Voronoi polygons of

500 points (ii) Delaunay

triangulation for 500 points, (iii)

Voronoi polygons of 1,000

points and (iv) Delaunay

triangulation for 1,000 point

d

A

B

C

D
E

F

Ap

α

L

X

Fig. 2 Schematic of statistical descriptors

7018 J Mater Sci (2007) 42:7016–7030

123



the area of one individual polygon, ASVE represents the

area of the SVE and N represents the nearest neighbors

(e.g., the number of polygons surrounding the inclusion/

polygon under consideration). For instance, for the polygon

ABCDEF there are six polygons which share a polygon

boundary AB, BC,..., FA. Hence the number of nearest

neighbors is six, similarly the number of nearest neighbors

can be computed for all the polygons under consideration.

L is the length of the SVE.

Statistical characterization of microstructure

morphology

In this paper two types of random arrangements are pre-

sented:

• Random arrangement of carbon-epoxy composites of

selected actual samples obtained from different patches

of composites.

• Random arrangement of model composite generated

numerically.

Random arrangement of carbon-epoxy composites of

selected actual samples

In this study, three samples of composite made of AS4

carbon fiber and epoxy matrix, which were obtained from

three different patches of composites, were evaluated. We

refer to these samples as set#1, set#2 and set#3. About 50

SVEs were obtained from each set. Figure 3 shows

examples of SVEs obtained from the three sets considered.

For complete list of all SVEs please see [41]. Each SVE

was digitized and image processing was used to locate the

center of each fiber. The coordinate of the fibers within

each SVE were used as seeds to locate the vertices of

Delaunay triangles. For each sample, values of the fol-

lowing statistical descriptors were calculated: nearest

neighbor distance; nearest neighbor angle; cell size (area of

Voronoi cell); and number of nearest neighbors. Various

Probability Distribution Functions (PDFs) were used and

for each descriptor, the cumulative probability distribution

(CPD) was calculated according to [40–51]. Kolmogorov–

Smirnov test (KS-test) was, then, used to determine the

best fit for each set [40–51].

Probability distribution fits of the four statistical de-

scriptors for set #1 with 234 inclusions are shown in Fig. 4.

Five different fits were used to fit the data. Namely: uni-

form, normal (Gaussian), Weibull, b and c. For set #1, all

probability distribution functions except the uniform dis-

tribution fit the experimentally obtained data as indicated

by the KS-test. Similar curves were generated for the other

two sets [41]. This technique may be used as quality check

for the dispersion of inclusion. For example, the gradual

increase in the cumulative probability distribution in Fig. 4

indicates that the inclusions in the data set#1 are distributed

randomly with very little clustering. On the other hand, by

examining Fig. 5 which shows a comparison of the distri-

bution of separation distances for three data sets, it is fair to

say that both data sets #2 and #3 have a predominant

Fig. 3 Example of SVEs

obtained from experimental sets

#1, #2 and #3
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clustering as compare to data set #1. The same has been

observed for the rest of the statistical descriptors.

The K-test may be used to differentiate between dif-

ferent composite processing procedures. This may be

achieved by comparing the CPD of the composite under

consideration with standard distribution curves of ideal

or required composite which will be more informative

than looking to the average (l), standard of deviation (r)

or coefficient of variation (COV). For example the

overall statistic information about distribution of fibers in

the three sets that are shown in Table 1 can give very

little information on the actual distribution of these

fibers.

The relation between the nearest neighbor distance (d)

and the area of Voronoi polygon Ap for the data obtained

from set #1 is shown in Fig. 6 which shows a strong cor-

relation between the distance to nearest neighbor and size

of Voronoi polygon. It shows that the closer the distance

between neighboring inclusions the smaller the generated

Voronoi cell area will be. Thus, it is expected that the stress

concentration will increase as the size of Voronoi cell

decreases.

Random arrangement of model composite generated

numerically

In this paper we, also, used numerical generation of ran-

dom fiber locations to optimize the number of SVEs nee-

ded to fully describe random microstructure. Overall

statistical parameters (e.g., l and r for normal distribution,

j and k for Gamma distribution ...etc) were chosen to be

the same as those obtained from the limited experimental

observations described in Section ‘‘Random arrangement

of carbon-epoxy composites of selected actual samples’’

according to the relations shown in Appendices 1 and 2.

Also, we used numerical generation of random fiber loca-

tion to characterize clustering using statistical descriptors.

Effect of number of SVE on statistical descriptors

The window concept is introduced as a square-shaped

domain taken from the random medium B(x). The window

size is introduced as:

d ¼ L

d
ð2Þ

This defines a non-dimensional parameter d typically

greater than 1, specifying the scale L of observation (or

measurement) relative to typical micro scale d (i.e. crystal

or inclusion size) of the material microstructure. The

window may be placed arbitrary in the domain of B(x)

with smallest size d > 1 (i.e. the scale of crystal or inclu-

sion). Since for any d > 1, Bd is a random rather than a

deterministic medium, the window of size d plays the role

of a SVE of the continuous random medium model [57].
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Fig. 4 Probability distribution

fits of the four statistical

descriptors for the data obtained

from experimental set #1
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Fig. 5 Comparison of

probability distribution of (i)

nearest neighbor distance and

(ii) area of Voronoi cells for

three data sets obtained from

three different samples

Table 1 Overall statistics for

the experimental data
l r COV

Set #1 Nearest neighbor distance 0.1632 0.08 2.04

Angle to nearest neighbor 46.1885 26.1592 1.765669439

Size of cell 0.0892 0.0832 1.072115385

# nearest neighbors 4.9151 1.0521 4.671704211

Set #2 Nearest neighbor distance 0.1004 0.0373 2.691689008

Angle to nearest neighbor 46.4755 27.1845 1.709632327

Size of cell 0.0397 0.0723 0.549100968

# nearest neighbors 5.527 1.0791 5.12186081

Set #3 Nearest neighbor distance 0.1651 0.034 4.855882353

Angle to nearest neighbor 45.2076 28.2002 1.603095014

Size of cell 0.0394 0.0253 1.557312253

# nearest neighbors 5.2267 0.9617 5.434854944
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The requirements and methods of evaluating SVEs have

been discussed in detail by [52–56]. In order to have a

representative volume element (RVE) that represents an

infinite microstructure, one needs to have a very large SVE.

This may be limited by the computational power used.

Alternatively, one can use many realizations of smaller

SVEs [57]. In this paper, many realizations of a relatively

small SVE were used to get the required accuracy. Keeping

in mind that the volume fraction (vf) may be different from

one SVE to another as shown in Fig. 7, a variation in the

volume fraction was introduced in accordance to the fol-

lowing relation:

mf ¼ hmf i 1þ r

100

� �
ð3Þ

where r = random number (we used Poisson distribution).

Also, we used r = [–10, 10] or [–30, 30], hmf i ¼ 0:55.

Figure 8 shows the COV of statistical parameters versus

the number of SVEs. Theoretically speaking, as the number

of SVEs approaches infinity the value of COV of statistical

descriptors becomes constant and we will have an RVE.

For this case of study, at around 100 realizations; the COV

of all statistical descriptors converge to constant values for

all of the three cases (constant volume fraction, with ±10%

variation in volume fraction, and with ± 30% variation in

volume fraction). Thus, only 100 realizations are needed to

get statistically meaningful representation of the micro-

structure.

Effect of clustering

Another way of classification of microstructure random-

ness may be defined in which the geometric disorder is

divided into a hardcore model and a cluster model. The

hardcore model is obtained by imposing certain prohibitive

distance (i.e., a minimum distance between the points in

the microstructure). Clustering in composites can be due to

many reasons (i.e., electromagnetic attraction in nano-scale

materials). In order to simulate clustering, parent points

were generated and distributed randomly in a hard core

model within an SVE. Then, off-spring points were dis-

tributed around parent point. The off-spring points were

distributed randomly with either a constant number of

points (we refer to this as uniform clustering) or with a

variable number of points (we refer to this as random

clustering). Gaussian distribution was used to generate all

the points. The total number of points was kept constant

and the following cases were investigated: random clus-

tering with 10 parent points; uniform clustering with 10

parent points; random clustering with 20 parent points; and

uniform clustering with 20 parent points Fig. 9 shows the

four clustering cases where the total number of off-spring

points was kept at a constant value of 1,000 with either

constant or variable number of off-spring points associated

with each parent point. For example, for the case of random

clustering with 10 parent points , the number of off-spring

points associated with parent points was varied randomly

between 40 and 220.

Typical CPD curves of the four statistical descriptors for

the case of random clustering with 10 parent points are

shown in Fig. 10.

Correlating detailed microstructure morphology to

local elastic fields

In this paper, the inclusions and the matrix are assumed to

be two distinct homogeneous isotropic materials. As a

result we have a realistic ergodic model without holes or

rigid inclusions described by a random field
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Fig. 6 Correlation between nearest neighbor distance and size of

polygon for the data obtained from set #1

Fig. 7 Schematic showing that the morphology and volume fraction

may be different for different SVEs obtained from the same sample

and of same size
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C ¼ fCðx;xÞ; x 2 B; x 2 Xg with piecewise-constant

realizations.

To create a non-uniform arrangement of inclusions,

random numbers, indicating centers of inclusions were

generated according to planar Poisson’s distribution. We

imposed restriction that the inclusions do not overlap. We

used the commercially available finite element package

ANSYS 7.0 [58]. We utilized quadrilateral plane stress

0 20 40 60 80 100 120 140 160 180 200
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Fig. 8 Effect of number of

SVEs on COV of (i) distance to

nearest neighbor, (ii) angle to

nearest neighbor, (iii) size of

Voronoi cell, and (iv) number of

nearest neighbors for cases of

0%, 10% and 30% random

variation of volume fraction

Fig. 9 (i) Random clustering

with 10 parent points, (ii)

uniform clustering with 10

parent points, (iii) random

clustering with parent points,

and (iii) uniform clustering with

20 parent points
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elements; such that each element was define by four nodes

having two degrees of freedom: translation in the nodal x1

and x2 directions and we used plane stress condition. Four

cases were evaluated:

• 5 0 0 i n c l u s i o n s w i t h hvf i ¼ 0:245, a n d

d ¼ L
d ¼ 1

0:0125
¼ 80

• 1 0 0 i n c l u s i o n s w i t h hvf i ¼ 0:245, a n d

d ¼ L
d ¼ 1

0:0025
¼ 40

• 1 0 0 i n c l u s i o n s w i t h hvf i ¼ 0:05, a n d

d ¼ L
d ¼ 1

0:0125
¼ 80

• 100 Voronoi polycrystals using the method of homog-

enization

where vf is the volume fraction of inclusions.

Two types of boundaries of the square microstructure

window were imposed @B1
d and @B2

d where the superscripts

indicate the outer normal (Fig. 11).

The window was subjected to kinematic boundary

conditions on @B2
d

uðxþ LÞ ¼ uðxÞ þ e0 � x 8x 2 B1
d ð4Þ

and periodic boundary conditions on ¶Bd
1

uðxþ LÞ ¼ uðxÞ
tðxþ LÞ ¼ �tðxÞ 8x 2 B2

d ð5Þ

where u is the displacement at x, e0 is applied strain, t is

surface traction. Also, L ¼ Le with e being a unit vector.

The composite that was simulated was AS4-carbon fi-

bers randomly dispersed in an epoxy matrix. Properties for

the matrix and the fiber used in this paper are shown in

Table 2. Discrete properties were given for corresponding
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Fig. 10 Probability distribution

of the four statistical descriptors
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Fig. 11 An RVE of a periodic

window of scale d = L/d for the

case of disordered matrix–

inclusion composite of

periodicity L showing a

schematic of the applied loading

used in the FEA
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regions of fibers and matrix. Each window was subjected to

the boundary conditions described in Eqs. 4 and 5.

Contour plots of von Misses stresses ðrm
effÞ in the matrix,

for the first three cases considered, are shown in Fig. 12. In

all cases a constant strain of e0 = 0.01 was applied in the

horizontal direction. This applied strain is equivalent to an

average stress (�r) of 7427 psi for the first two cases and

5,116 psi for the third case. The contour plots illustrate the

effect of random arrangement of inclusions on distribution

of stresses around reinforcing inclusions. Observe that the

stresses are distributed very unevenly between inclusions.

This is in contrast of periodic arrangements in which

inclusions share the same a mount of loading equally. The

rotation of the plots in Fig. 12 is due to rigid body

displacement associated with the resulting non-uniform

displacement field at the edge of the RVE. This non-uni-

from displacement is due to the random arrangement of

inclusions.

In order to evaluate the distribution of stresses, proba-

bility distribution fits were used. Figure 13 shows the

cumulative probability distribution of the maximum von

Misses stresses in the matrix around each inclusion for all

three cases. Three PDF were used to fit the data: Weibull,

Normal and Gamma. Using the Kolmogorov–Smirnov test

(KS-test), it was found that, for these cases, all the three

distributions fit the rm
eff data.

From Fig. 12 one can observe that there is some kind of

bridging effect of stresses between inclusions in the

direction of applied loading. Inclusions that are closer to

each other tend to produce higher stress in the matrix. This

effect is demonstrated in Figs. 14 and 15 were the maxi-

mum stress around each inclusion is correlated to the

separation distance to closest neighboring inclusion and to

the size of resulting Voronoi cell for the case of 500

inclusions with hmf i ¼ 0:245. It is clear that the smaller the

size of the Voronoi cell and the smaller the separation

distance between inclusions, the larger the associated stress

is. Thus, this may indicate an earlier possibility of fracture

under a given load for composites with high degree of

clustering. Similar behavior was observed for the other

three cases [41].

Table 2 Elastic properties of carbon/epoxy constituents used

Material Young’s

modulus,

GPa (Msi)

Poisson’s

ratio

CTE

(lm/m/�C)

TG,

�C (�F)

AS4 carbon fiber 221 (32) 0.25 1.6

Epoxy matrix 3.0 (0.44) 0.38 194 75 (167)

Fig. 12 Contour plots of reff
m (psi) for the case of (i) 500 inclusions

with mf

� �
¼ 0:245, (ii) 100 inclusions with mf

� �
¼ 0:245, and (iii) 100

inclusions with mf

� �
¼ 0:05 subjected to uniaxial strain e0 ¼ 0:01 in

the x-direction
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Homogenization

Effective medium theories had been used to estimate

homogenized properties of composite materials and aver-

age stresses. For review see [59–63]. The case of 100

inclusions with total volume fraction of 0.05 was evaluated

and Voronoi cells were drawn around each inclusion. Local

volume fractions were calculated for each cell and elastic

properties were obtained using self consistent and com-

posite cylinder models for transversely isotropic materials
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Fig. 14 Effect of size of Voronoi cell on maximum r eff
m in each cell

for the case of 500 inclusions with mf

� �
¼ 0:245
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Fig. 15 Effect of separation distance to nearest neighbor on

maximum reff
m in each cell for the case of 500 inclusions with

mf

� �
¼ 0:245
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Fig. 13 Probability distribution reff
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mf
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¼ 0:245, (ii) 100 inclusions with mf

� �
¼ 0:245, and (iii) 100

inclusions with Æmf æ = 0.05 for cases of a uniaxial applied strain of

e0 = 0.01
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[63] to homogenize elastic properties within each Voronoi

cell (see Appendix 3). Thus, polycrystalline structure was

constructed.

Finite element method was used to obtained contour plot

of calculate the distribution of reff
p (Fig. 16). Note that the

stress distribution is more uniform in this case as compared

to the case shown in Fig. 12 (iii). The rotation of the plots

is due to rigid body displacement associated with the rel-

atively non-uniform displacement field at the edge of the

RVE. Figure 17 shows the CPD of the von Mises stress in

the homogenization case ðrp
effÞ and the 100 inclusions case

(reff
m ). From the probability distribution graph it can be seen

that the stresses in the homogenization case are more

confined to a smaller range of values with a more gradual

increase in compare to the case of 100 inclusions (com-

posite) of the same volume fraction and distribution. Also

the effect of polygon size on maximum stress in each cell is

more pronounced for the case of the 100 inclusion

(Fig. 18). As it is evident from Fig. 18, the von Mises

stress in the composite is always higher than the homog-

enization case. Thus homogenization method undermines

the maximum stresses in composites. Table 3 shows the

overall statistics of the distribution of reff for all four cases

considered in this paper. Note that by fixing the volume

fraction and reducing the number of inclusion, the COV of

reff will be much smaller. This is due to the fact that, the

larger the number of the inclusion, the larger the proba-

bility of inclusions to be at a closer distance from one

another. Also, the table shows that the stresses in the

homogenized composite (polycrystals case) are much

more uniform than that of equivalent case of randomly

distributed inclusions.

Fig. 16 Contours of reff
p (psi) for homogenized polygons

Fig. 17 Probability distribution of reff
m and reff

p for case of matrix

inclusion composite and for polycrystals case

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

oo   polycrystals 
++  Matrix-inclusion composite 

AP/ASVE

3.0 

2.0 

1.0 

0.0 

σ
ffe
/ σ

Fig. 18 Effect of size of Voronoi cell on maximum r eff
m and reff

p in

each cell

Table 3 Mean, standard of deviation and coefficient of variation of

reff
m for all the four cases

l (ksi) r (ksi) COV

500 inclusions mf

� �
¼ 0:245,

d = 80

8.2 E+03 1.2 E+04 0.683

100 inclusions mf

� �
¼ 0:245,

d = 35.8

8.68 E+03 2.5 E+03 0.285

100 inclusions mf

� �
¼ 0:05,

d = 80

7.83 E+03 3.97 E+03 0.5075

Homogenization mf

� �
¼ 0:05 5.374 E+03 354.25 0.0659
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Conclusions

This paper sets a frame work for correlating microstructure

morphology of random inclusion–matrix composites to

their local stress fields. It is shown that Voronoi cells and

Delaunay triangulation may serve as a sound technique for

characterizing random microstructure of various compos-

ites. This technique may be used as a quality control ap-

proach for statistical characterization of different classes of

composites (e.g., identifying degree of clustering). Based on

the groundwork laid in this paper, one may use the same

approach to study the effect of random interphase or

interface, random shape and random size of inclusions.
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Appendix 2 Probability distribution library

Distribution name Id PDF, fx (x) CDF, Fx (x) Parameters note

P1 P2 P3 P4

Normal 1 1ffiffiffiffiffiffi
2pr
p exp �1

2
x�l
r

� �� 	
U x�l

r

� 	
l 0 < r 1

Lognormal 2 1ffiffiffiffiffiffiffi
2pfx
p exp �1

2
ln x�k

f

� �2

 �

U ln x�k
f

h i
k 0 < f 1

Gamma 3
k kxð Þk�1

C kð Þ exp �kxð Þ; 06x C k;kxð Þ
C kð Þ 0 < k 0 < k 2,3

Shifted exponential 4 k exp �k x� x0ð Þ½ �; x06x 1–exp (–k (x–x0)) 0 < k x0

Shifted Rayleigh 5
ðx�x0Þ

a2 exp �1
2

x�x0

a

� �2
h i

; x06x 1� exp �1
2

x�x0

a

� �2
h i

a xo

Uniform 6 1
b�að Þ ; a6x6b x�a

b�a a b

Beta 7
x�að Þq�1 b�xð Þr�1

B q;rð Þ b�að Þqþr�1 ; a6x6b 0 < q 0 < r a b 4

Type I larget value 11 an exp [ –an (x–un )– exp (–an (x–un ) ) ] exp [ –exp (–an (x–un ) ) ] un 0 < an 5

Type I smallest value 12 a1 exp [ a1 (x–u1 )– exp (a1 (x–u1 ) ) ] 1–exp [ –exp (a1 (x–u1 ) ) ] u1 0 < a1

Type II largest value 13 k
un

un

x

� �kþ1
exp � un

x

� �k
h i

; 0\x exp � un

x

� �k
h i

; 0\x un 0 < k

Type III smallest value 14 k
u1�e

x�e
u1�e

� �k�1

exp � x�e
u1�e

� �h i
; e6x 1� exp � x�e

u1�e

� �k

 �

u1 0 < k 6

Note:

1. U xð Þ ¼ 2pð Þ�1
R x

�1 exp �u2=2ð Þdu is the standard normal cumulative probability

2. C kð Þ ¼
R1

0
e�uuk�1du is the gamma function. For integer k, C kð Þ ¼ k � 1ð Þ!

3. C k; xð Þ ¼
R x

0
e�uuk�1du is the incomplete gamma function with G (k,¥ ) = G (k )

4. B q; rð Þ ¼ C qð ÞC rð Þ
C qþrð Þ is the beta function

5. This distribution is also known as Gumbel distribution

6. For e = 0, this distribution if known as the Weibull distribution

Appendix 1 Mean and

standard deviation of

probability distributions

Distribution name Mean Standard deviation

Normal l r

Lognormal exp kþ n2

2

� �
exp kþ n2

2

� �
expðn2 � 1
� 	1=2

Gamma k
k

ffiffi
k
p

k

Shifted Rayleigh m0 þ p
2

� �1=2
a 2� p

2

� �1=2
a

Shifted exponential m0 þ 1
k

1
k

Uniform aþb
2

b�a
2
ffiffi
3
p

Beta aþ qðb�aÞ
qþr

b�a
qþr

qr
qþrþ1

� �1=2

Type I largest value un þ 0:5772
an

pffiffiffiffiffi
6an

p

Type I smallest value u1 � 0:5772
a1

pffiffiffiffiffi
6a1

p

Type II largest value unC 1� 1
k

� �
un C 1� 2

k

� �
� C2 1� 1

k

� �� 	1=2

Type III smallest value eþ ðu1 � eÞC 1þ 1
k

� �
ðu1 � eÞ C 1þ 2

k

� �
� C2 1þ 1

k

� �� 	1=2
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Appendix 3: Self Consistent method [62]

Consider a system of aligned fibers along the x1 direction.

Media of this type have symmetry properties in the plane

normal to the fiber direction (x2 x3 directions). Such media

are characterized as transversely isotropic materials. Such

media have five independent constants (i.e. (i.e. E11; m12;

K23; l12; l23). Where E, K and l are the Young’s, bulk and

shear modulii respectively and v is the Poisson’s ratio.

E11¼ð1�f ÞEmþfEf

þ 4f ð1�f Þðmf�mmÞ2lm

ð1�f Þlm=ðKfþlf =3Þ
� 	

þ f lm=ðKmþlm=3Þ½ �þ1

ðA1Þ

l12¼ð1�f Þmmþf mf

þ
f ð1�f Þðmf�mmÞ lm=ðKmþlm=3Þ�lm=ðKfþlf =3Þ

� 	
ð1�f Þlm=ðKfþlf =3
� 	

þ f lm=ðKmþlm=3Þ½ �þ1

ðA2Þ

K23 ¼Km þ
lm

3

þ f

1= Kf � Km þ 1
3
ðlf � lmÞ

� 	
þ ð1� f Þ= Km þ 4lm

3

h i

ðA3Þ

l12

lm

¼
lf ð1þ f Þ þ lmð1� f Þ
lf ð1� f Þ þ lmð1þ f Þ ðA4Þ

A
l23

lm

� 2

þ2B
l23

lm

� 
þ C ¼ 0 ðA5Þ

where

A¼ 3f ð1� f Þ2 lf

lm
�1

� �
lf

lm
¼ gf

� �

þ lf

lm
gmþgf gm¼

lf

lm
�gf

� �
f 3

h i

� f gm
lf

lm
�1

� �
� lf

lm
gmþ1

� �h i

B¼ 3f ð1� f Þ2 lf

lm
�1

� �
lf

lm
¼ gf

� �

þ1
2

lf

lm
gmþ

lf

lm
�1

� �
f þ1

h i

� ðgm�1Þ lf

lm
gmþgf

� �
�2

lf

lm
gm�gf

� �
f 3

h i

þ f
2
ðgmþ1Þ lf

lm
�1

� �
lf

lm
gmþgf

� �
þ lf

lm
gm�gf

� �
f 3

h i

C¼ 3f ð1� f Þ2 lf

lm
�1

� �
lf

lm
þgf

� �

þ lf

lm
gmþ

lf

lm
�1

� �
f þ1

h i

� lf

lm
gmþ

lf

lm
gm�gf

� �
f 3

h i

ðA6Þ

where f = Volume fraction g = 3–4m.
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